Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Human‐caused climate change is predicted to bring more frequent droughts and higher temperatures in the western United States, which threaten ecologically important trembling aspen forests.We used ring‐specific vulnerability curves of aspen branches along two climate gradients to determine whether damages to pit membranes accumulate as the xylem ages.We found that rings older than 3 yr have a significant decline in hydraulic conductivity, especially at average summer water potentials for the species. These differences were not due to differences in the diameter of the vessels, but a difference in how much xylem was active between rings older than 3 yr and 1 yr, suggesting the presence of accumulated damage to pit membranes impairing water transport.Vulnerability to embolism differs across ring age and between wetter and drier populations, underscoring that damages due to drought may accumulate to lethal levels if the xylem does not acclimate to climate change in newer growth.more » « less
-
ABSTRACT Nature‐based climate solutions in Earth's forests could strengthen the land carbon sink and contribute to climate mitigation, but must adequately account for climate risks to the durability of carbon storage. Forest carbon offset protocols use a “buffer pool” to insure against disturbance risks that may compromise durability. However, the extent to which current buffer pool tools and allocations align with current scientific data or models is not well understood. Here, we use a tropical forest stand biomass model and an extensive set of long‐term tropical forest plots to test whether current buffer pool contributions are adequate to insure against observed disturbance regimes. We find that forest age and disturbance regime both influence necessary buffer pool sizes. In the majority of disturbance scenarios in a major carbon registry buffer pool tool, current buffer pools are substantially smaller than required by carbon cycle science. Buffer pool tools and estimates urgently need to be updated to accurately assess disturbance regimes and climate change impact on disturbances based on rigorous, open scientific datasets for nature‐based climate solutions to succeed.more » « less
-
Abstract Cyclonic storms, or hurricanes, are expected to intensify as ocean heat energy rises due to climate change. Ecological theory suggests that tropical forest resistance to hurricanes should increase with forest age and wood density. However, most data on hurricane effects on tropical forests come from a limited number of well‐studied long‐term monitoring sites, restricting our capacity to evaluate the resistance of tropical forests to hurricanes across broad environmental gradients.In this study, we assessed whether forest age and aridity mediate the effects of hurricanes Irma and Maria in Puerto Rico, Vieques and Culebra islands. We leveraged functional trait data for 410 tree species, remotely sensed measurements of canopy height and cover, along with data on forest stand characteristics of 180 of 338 forest monitoring plots, each covering an area of 0.067 ha. The plots represent a broad mean annual precipitation (MAP) gradient from 701 to 4598 mm and a complex mosaic of forest age from 5 to around 85 years since deforestation.Hurricanes resulted in a 25% increase in basal area mortality rates, a 45% decrease in canopy height and a 21% reduction in canopy cover. These effects intensified with forest age, even after considering proximity to the hurricane path. The links between forest age and hurricane disturbances were likely due the prevalence of tall canopies.Tall forest canopies were strongly linked with low community‐weighted wood density (WD). These characteristics were on average more common in moist and wet forests (MAP >1250 mm). Conversely, dry forests were dominated by short species with high wood density (WD > 0.6 g cm−3) and did not show significant increases in basal area mortality rates after the hurricanes.Synthesis. Our findings show that selection towards drought‐tolerant traits across aridity gradients, such as short stature and dense wood, enhances resistance to hurricanes. However, forest age modulated responses to hurricanes, with older forests being less resistant across the islands. This evidence highlights the importance of considering the intricate links between ecological succession and plant function when forecasting tropical forests’ responses to increasingly strong hurricanes.more » « less
An official website of the United States government
